The Unitary Fermi Gas

David Grabovsky and Evan Wickenden

April 23, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

"AMO physics is experimental condensed-matter theory."

- Slow quantum dynamics observable on human timescales
- Many-body physics, out-of-equilibrium phenomena
- Strongly correlated systems: BECs, Fermi gases
- Precision atomic clocks and industrial devices
- BSM physics: CP violation (eEDM), tests of GR, etc.

(日) (國) (필) (필) (필) 표

- Quantum simulation, computing, and information
- And many more...

Na Atoms in Sebastian Will's Lab

Na Atoms in Sebastian Will's Lab

Na Atoms in Sebastian Will's Lab

Fermi Gases: Background

1995: Cornell, Wiemann, Ketterle synthesize the first BEC (Nobel 2001).

2004-2005: The BCS-BEC crossover is experimentally observed, with unitarity achieved at the phase transition in the middle of the crossover.

Figure: Quantized vortices in a rotating Fermi gas, demonstrating superfluidity.

<ロ> (四) (四) (三) (三) (三) (三)

a gives the length scale of correlations in the gas. Contact scattering against a sphere of radius a has the same cross section: $\lim_{k \to 0} \sigma = 4\pi a^2$.

A dilute, homogeneous Fermi gas only has length scales $1/k_F$ and a, so the system is fully characterized by the dimensionless parameter k_Fa .

The **unitary Fermi gas** is the limit $k_F a \to \infty$.

- Infinite interaction range makes every atom coupled to every other, producing a maximally many-body state.
- The gas is self-similar at every length scale: zooming out does not decouple the system or make interactions fade.
- Self-similarity and scale invariance often accompany a phase transition: in this case, the BCS-BEC crossover.
- This lets us view unitary fermions as a strongly coupled CFT...

SURPRISE!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The AdS/CFT Correspondence 00000000

Holography for Galilean CFTs

 $\begin{array}{c} \text{Conclusions and Outlook}\\ \text{oo} \end{array}$

The Gauge/Gravity Duality

Duality is emerging as an important theme in modern physics.

Example: classical electrodynamics in vacuum

Maxwell's equations in free space are invariant under the interchange of the electric and magnetic fields, $\mathbf{E} \to \mathbf{B}, \ \mathbf{B} \to -\frac{1}{c^2}\mathbf{E}$.

AdS/CFT: a theory of (quantum) gravity in a "bulk" spacetime is equivalent to a conformal field theory on its boundary.

Implications: M-theory, qark-gluon plasma, superfluids... cold atoms!

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs	Conclusions and Outlook
00000000000			

Cold Atoms and Holography The Gravity Dual of the Schrödinger Equation

David Grabovsky and Evan Wickenden

April 23, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The AdS/CFT Correspondence 00000000

Holography for Galilean CFTs

Conclusions and Outlook

Contents

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs 0000	Conclusions and Outlook
Outline			

The Fermi Gas at Unitarity

- Ultracold Quantum Gases
- Fermions at Unitarity
- Cold Atoms and AdS/CFT

2 The AdS/CFT Correspondence

- Conformal Field Theories
- GR and Quantum Gravity
- The AdS/CFT Dictionary

3 Holography for Galilean CFTs

4 Conclusions and Outlook

The Fermi Gas at Unitarity 0000000000	The AdS/CFT Correspondence ●0000000	Holography for Galilean CFTs	Conclusions and Outlook
Quantum Fiel	d Theory		

QFT: quantization of classical fields by promoting them to operators

 $\underline{\text{Discrete}} \qquad \underline{\text{Continuous}} \\
 \frac{\partial L}{\partial q} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) \qquad \partial_{\mu} \mathcal{L} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) \\
 [q, p] = i\hbar \qquad [\phi(x), \pi(y)] = i\hbar \delta(x - y)$

- Infinitely many degrees of freedom: QM is (0 + 1)-D QFT.
- Symmetries constrain the terms allowed in the Lagrangian.

Example: relativistic free scalar field

$$\mathcal{L} = \frac{1}{2} \left(\partial_t^2 \phi - \nabla^2 \phi \right) - \frac{1}{2} m^2 \phi^2 = \frac{1}{2} (\partial_\mu \phi)^2 - \frac{1}{2} m^2 \phi^2.$$
(2)

Holography for Galilean CFTs

Conclusions and Outlook

Conformal Invariance

Definition (conformal field theory)

A field theory is scale-invariant if a scale transformation $x \to \lambda x$ causes the fields to transform as $\phi \to \lambda^{-\Delta} \phi$, i.e. $\phi(x) = \lambda^{\Delta} \phi(\lambda x)$.

Example: QED and Running Couplings

In QED, the electron's "bare" charge diverges as we get closer to it (i.e. at higher energies). In CFTs, the couplings do not run.

The AdS/CFT Correspondence

Holography for Galilean CFTs 0000 Conclusions and Outlook

Scaling and Phase Transitions

Phase transitions \iff invariance under rescalings $x \to \lambda x, t \to \lambda^z t$.

- For Lorentz-invariant systems, z = 1 since space \equiv time.
- The free Schrödinger equation is invariant with z = 2:

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x,t)=i\hbar\frac{\partial}{\partial t}\psi(x,t).$$

 $(\lambda^2 \text{ cancels on both sides})$

"Big fleas have little fleas upon their backs to bite 'em, And little fleas have lesser fleas, and so on, *ad infinitum*. And great fleas, themselves, in turn, have greater fleas to go on; While these again have greater still, and greater still, and so on.

—Augustus De Morgan

The AdS/CFT Correspondence

Holography for Galilean CFTs

9...

Conclusions and Outlook

A. EINSTEIN

General Relativity

"Spacetime tells matter how to move; matter tells spacetime how to curve." — John Wheeler

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs 0000	Conclusions and Outlook
General Relati	vity		

The Einstein-Hilbert action yields the Einstein field equations (EFE),

$$S = \int \left[\frac{1}{4\pi G}(R - 2\Lambda) + \mathcal{L}_{\mathrm{M}}\right] \sqrt{-g} \,\mathrm{d}^4 x; \tag{3}$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu}.$$
 (4)

- The cosmological constant Λ represents a uniform negative energy density ("vacuum energy") throughout spacetime.
- Solutions to the EFE are **metrics** $g_{\mu\nu}$, which respond to mass-energy $T_{\mu\nu}$ to determine the geometry of spacetime.

The AdS/CFT Correspondence

Holography for Galilean CFTs

Conclusions and Outlook

Vacuum Solutions to the EFE

 $T_{\mu\nu} = 0$ implies a spacetime of constant curvature.

Euclidean signature

- K = +1: Sphere, S^n
- K = 0: Euclidean space, \mathbb{R}^n
- K = -1: Hyperbolic space, \mathbb{H}^n

Lorentzian signature

- $\Lambda > 0$: De Sitter space, dS_n
- $\Lambda = 0$: Minkowski, $\mathbb{R}^{n-1,1}$
- $\Lambda < 0$: Anti-de Sitter, AdS_n

The Lorentzian spacetimes are obtained from the Euclidean spaces by flipping the sign of the time coordinate (i.e. by Wick rotation).

The AdS/CFT Correspondence

Holography for Galilean CFTs

Conclusions and Outlook

String Theory on AdS

String theory is a quantum theory of gravity, and is not well understood.

In particular, it may be formulated in an AdS_n background whose **conformal boundary** is locally Minkowski in dimension n - 1.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs	Conclusions and Outlook
0000000000	○○○○○○●	0000	
Holographic E	Duality!		

• Bekenstein-Hawking, 1974: black hole entropy scales with area,

$$S_{\rm BH} = \frac{c^3 k_{\rm B} A}{4\hbar G} = \frac{4k_{\rm B} A}{4\ell_{\rm P}^2}.$$
 (5)

- Susskind, 1995: the boundary holographically describes the bulk.
- Maldacena, 1997: the Minkowski boundary ℝ^{d-1,1} of AdS_{d+1} provides the spacetime for a CFT (e.g. N = 4 SYM), whose physics is equivalent to string theory (e.g. IIB on AdS₅ × S⁵) in the bulk.
- This is a **strong-weak duality**: the semiclassical limit of string theory (i.e. GR) corresponds to strong coupling in the CFT!

The AdS/CFT Correspondence

Holography for Galilean CFTs

Conclusions and Outlook

Outline

The Fermi Gas at Unitarity

- Ultracold Quantum Gases
- Fermions at Unitarity
- Cold Atoms and AdS/CFT

2 The AdS/CFT Correspondence

- Conformal Field Theories
- GR and Quantum Gravity
- The AdS/CFT Dictionary

Holography for Galilean CFTs

4 Conclusions and Outlook

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs ●000	Conclusions and Outlook
The Plan of A	ttack		

- Obscribe the algebra of Schrödinger symmetries explicitly.
- Embed this algebra into a higher-dimensional conformal group, making unitary fermions part of a bigger relativistic CFT.
- Write down an AdS metric dual to this CFT, then deform it to reduce its symmetries to those of the Schrödinger equation.
- Analyze this dual theory and develop its AdS/CFT dictionary.

The Fermi Gas at Unitarity 0000000000	The AdS/CFT Correspondence	Holography for Galilean CFTs ○●○○	Conclusions and Outlook
The Schröding	ger Algebra		

The Schrödinger algebra is generated by time translations H and spatial translations P^i , rotations M^{ij} , Galilean boosts K^i , dilation D with z = 2, a "special conformal" transformation C, and the mass m.

Nonzero commutators of the Schrödinger algebra:

$$\begin{split} [M^{ij}, M^{kl}] &= i(\delta^{ik}M^{jl} + \delta^{jl}M^{ik} - \delta^{il}M^{jk} - \delta^{jk}M^{il}), \\ [M^{ij}, P^k] &= i(\delta^{ik}P^j - \delta^{jk}P^i), \quad [M^{ij}, K^k] = i(\delta^{ik}K^j - \delta^{jk}K^i), \\ [D, P^i] &= -iP^i, \quad [D, K^i] = iK^i, \quad [P^i, K^j] = -i\delta^{ij}m, \\ [D, H] &= 2iH, \quad [D, C] = 2iC, \quad [H, C] = iD. \end{split}$$
(6)

Unitary fermions are also invariant under the spin rotations SU(2).

Embedding into a Conformal Group

The massless Klein-Gordon equation in $(\mathbb{R}^{d+1,1}, \eta_{\mu\nu})$ is the relativistic wave equation, and is conformally invariant with z = 1:

$$\Box \psi \equiv \left(-\partial_0^2 + \sum_{i=1}^{d+1} \partial_i^2 \right) \phi = 0.$$
(7)

 The Fermi Gas at Unitarity
 The AdS/CFT Correspondence
 Holography for Galilean CFTs
 Conclusions and Outlook

 0000000000
 00000
 00000
 00000

Embedding into a Conformal Group

The massless Klein-Gordon equation in $(\mathbb{R}^{d+1,1}, \eta_{\mu\nu})$ is the relativistic wave equation, and is conformally invariant with z = 1:

$$\Box \psi \equiv \left(-\partial_0^2 + \sum_{i=1}^{d+1} \partial_i^2 \right) \phi = 0.$$
(7)

In light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}} (x^0 \pm x^{d+1})$,

$$\left(-2\frac{\partial}{\partial x^{-}}\frac{\partial}{\partial x^{+}} + \sum_{i=1}^{d}\partial_{i}^{2}\right)\psi = 0.$$
 (8)

 The Fermi Gas at Unitarity
 The AdS/CFT Correspondence
 Holography for Galilean CFTs
 Conclusions and Outlook

 0000000000
 00000
 00000
 00000

Embedding into a Conformal Group

The massless Klein-Gordon equation in $(\mathbb{R}^{d+1,1}, \eta_{\mu\nu})$ is the relativistic wave equation, and is conformally invariant with z = 1:

$$\Box \psi \equiv \left(-\partial_0^2 + \sum_{i=1}^{d+1} \partial_i^2 \right) \phi = 0.$$
(7)

In light-cone coordinates $x^{\pm} = \frac{1}{\sqrt{2}} (x^0 \pm x^{d+1})$,

$$\left(-2\frac{\partial}{\partial x^{-}}\frac{\partial}{\partial x^{+}} + \sum_{i=1}^{d}\partial_{i}^{2}\right)\psi = 0.$$
 (8)

Make the identification $\partial/\partial x^- \equiv -im$, and let x^+ play the role of time. (Or, identify the light-cone momenta P^{\pm} with mass and energy.)

$$\left(2im\frac{\partial}{\partial t} + \sum_{i=1}^{d} \partial_i^2\right)\psi = 0 \iff i\frac{\partial}{\partial t}\psi = -\frac{1}{2m}\nabla^2\psi.$$
(9)

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs 000●	Conclusions and Outlook
The Gravitation	onal Dual		

Deform the AdS_{d+3} metric in Poincaré coordinates (x^{\pm}, x^i, r) :

$$ds^{2} = \frac{1}{r^{2}} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dr^{2} \right) = \frac{1}{r^{2}} \left(-dt^{2} + d\mathbf{x}^{2} + dr^{2} \right) \longrightarrow$$
$$\frac{1}{r^{2}} \left(-\frac{2 dx^{+2}}{r^{2}} - 2 dx^{-} dx^{+} + d\mathbf{x}^{2} + dr^{2} \right) = ds_{*}^{2}.$$
(10)

Generators of the conformal algebra correspond to isometries of $g_{\mu\nu}$.

Key features:

- Negative curvature ($\Lambda < 0$) and uniform pressureless dust.
- Discrete mass spectrum $\implies x^-$ is compactified à la KK.

The Fermi Gas at Unitarity 00000000000	The AdS/CFT Correspondence	Holography for Galilean CFTs 0000	Conclusions and Outlook
Outline			

The Fermi Gas at Unitarity

- Ultracold Quantum Gases
- Fermions at Unitarity
- Cold Atoms and AdS/CFT

2) The AdS/CFT Correspondence

- Conformal Field Theories
- GR and Quantum Gravity
- The AdS/CFT Dictionary

3 Holography for Galilean CFTs

4 Conclusions and Outlook

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs 0000	Conclusions and Outlook ●0
Summary and	Takeaways		

Summary:

- Correlations of infinite range $a \to \infty$ in ultracold Fermi gases yield universal, scale-invariant behavior (z = 2).
- Viewed as an infinitely strongly coupled CFT, unitary fermions should have a dual gravitational description in the bulk.
- We achieve this by embedding the Schrödinger algebra into a conformal group, and by deforming the corresponding AdS metric to reduce its symmetries to those of the Schrödinger equation.
- The dual theory has negative cosmological constant, is dusty, and has an extra dimension. Not much else is currently understood.

Takeaway: physics is cool as hell.

The Fermi Gas at Unitarity	The AdS/CFT Correspondence	Holography for Galilean CFTs 0000	Conclusions and Outlook ⊙●
References			

- "Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry" (D. Son), https://arxiv.org/pdf/0804.3972.pdf.
- Gravity duals for nonrelativistic CFTs" (K. Balasubramanian and J. McGreevy), https://arxiv.org/pdf/0804.4053.pdf.
- (3) "The unitary Fermi gas: an overview" (M. Forbes), http://www.int.washington.edu/PROGRAMS/12-2c/week3/forbes.pdf.
- "Lectures on holographic Superfluidity and Superconductivity" (M. Randeria and E. Taylor), https://arxiv.org/pdf/0904.1975.pdf.
- The bizarre antide Sitter spacetime" (L. Sokołowski), https://arxiv.org/pdf/1611.01118.pdf.
- We thank Wikipedia for its useful discussions on scale invariance, AdS space, the Einstein-Hilbert action, and the AdS/CFT correspondence.